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Energy- and charge-conserving algorithms for numerical simulation of collisionless 
plasma with point particles, including electromagnetic interactions, are derived from 
Hamilton’s variational ptinciple. The equations are put in a form suitable for advancing 
the electromagnetic potentials with a time-centered leapfrog difference scheme. An 
example is presented for a Cartesian geometry. 

I. INTRODUCTION 

It has been shown [l, 21 that Hamilton’s variational principle can be used in 
a systematic way to derive a wide class of numerical algorithms for studying 
collisionless plasmas. The simplest application of this method is when we consider 
a collection of point particles interacting purely electrostatically (vector potential 
equal to zero), and represent the scalar potential in periodic Cartesian geometry 
as a continuous piecewise linear function of each coordinate. That is, we represent 
the scalar potential by its values at the points of a spatial grid with linear inter- 
polation of the potential in each coordinate direction between the grid points. 
With point particles and this representation of the scalar potential, the approxi- 
mation to Poisson’s equation that is obtained from the variational principle is 
a system of equations that is in fact a particle-in-cell (or cloud-in-cell) method 
with “area-weighting” for the apportionment of charge to the different grid 
points [3-51. The representation of the Laplacian implied by the variational 
derivation is the central difference approximation to dz/dx2 in one dimension [l, 21, 
and a particular nine-point scheme in two dimensions [l]. In the particle equations 
of motion that are deduced from the variational principle, the electric field is 
computed as the negative gradient of the assumed representation of the scalar 
potential without any interpolation or smoothing. To date, only limited analytical 
or numerical comparisons of the various methods currently in use for plasma 
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simulation have been made. However, it has been demonstrated that the variational 
prescription is advantageous with regard to numerical stability when the grid 
spacing is suEciently large [6-81, and with regard to fluctuations in total energy 
for sufficiently large grid spacing and/or small time step [9]. No comparisons 
have been made in two or three dimensions. 

In this paper, we use the variational principle to provide simulation algorithms 
for point particles interacting electromagnetically. Because of the common varia- 
tional derivation, these algorithms are natural generalizations of the algorithms 
for electrostatic problems that were derived from the variational principle. As 
in the electrostatic case, the algorithms conserve energy exactly in the limit of 
zero time step. The variational method can be applied as easily in curvilinear 
geometry as in Cartesian geometry, and it is applicable to more general representa- 
tions of the potentials than, say, the piecewise linear representation that leads to 
“area-weighting” in electrostatic problems. The derivation and main results in 
this paper are given in curvilinear coordinates for a class of representations of the 
potentials, among which are included the piecewise linear and other representations 
that lead to generalized finite-difference approximations to the Maxwell equations. 
The final equations are written in matrix form, where the matrices are defined in 
terms of the representation and coordinate system that are to be used. Thus, 
the final equations can be specialized to a particular problem by evaluating the 
matrix elements appropriate to the representation and coordinate system chosen 
for that problem. This is generally a simple task; as an example, the matrix elements 
appropriate to a periodic Cartesian geometry with two spatial variables and a 
piecewise linear representation of the scalar potential are presented at the end 
of the paper, and the final equations are rewritten specifically for that situation. 
It is not necessary to follow the derivation of the general equations in detail either 
to use those equations or to use the specific equations that are given for the Cartesian 
example. The paper is a further application of the formalism presented in Ref. [l], 
with formulas that can be used in a variety of problems. 

Of the schemes that have been proposed for simulating plasmas with electro- 
magnetic interactions [IO-171, the one most closely related to the schemes presented 
in this paper is one of the three used by Morse and Nielson in their simulation 
of the nonlinear Weibel instability [17]. They found it to be the most effective 
of the three. It is based on the scalar and vector potentials, as are the variational 
algorithms; and, except for quantities related to divergence-free currents, the 
spatial centering of the variables corresponds to the centering implied by the 
variational algorithm when a piecewise linear representation is used for the scalar 
potential. The geometry chosen for the example at the end of this paper is the 
same as that used by Morse and Nielson. 

In principle, there need be no relation between the representation chosen for 
the scalar potential and that chosen for the vector potential, and none was assumed 
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in Ref. [I]. However, a special choice of representation of the vector potential 
in terms of the representation of the scalar potential has been made in deriving 
the final equations of this paper. With that choice, the final equations for the 
potentials can be viewed as a representation of the V . E Maxwell equation, 
a representation of the V x B Maxwell equation for that part of the current 
density that is divergence-free, and a representation of the divergence of the 
three vector components of the V x B equation for the part of the current density 
which has a nonzero divergence. As a result, the equations are consistent with a 
direct analog of the usual charge conservation theorem, and are redundant because 
of the charge conservation theorem, just as is true with the exact Maxwell equa- 
tions. The redundancy is removed by imposition of a direct analog of one of the 
usual gauge conditions. It is possible for an analog of the usual charge conservation 
theorem to be satisfied by the numerical algorithms because a representation of 
the divergence of the current density enters the formulation. 

The final equations are presented in a Hamiltonian form as well as in a 
Lagrangian form. With the Hamiltonian form, the dynamical variables, including 
those related to the vector potential, satisfy first-order differential equations in 
time, and the potentials can be advanced with a time-centered, time-reversible 
leapfrog scheme. 

The notation used in this paper and in previous discussions of the variational 
method [l, 21 was chosen in a way that seemed appropriate to the generality of 
the method. For example, only for special choices of the basis functions are the 
expansion coefficients for the potentials equal to values of the potentials at points 
of a grid. Therefore, it seems inappropriate to use symbols for the expansion 
coefficients that are closely related to the usual symbols for the potentials. Instead, 
the symbols for the basis functions are chosen to correspond to the usual symbols 
for the potentials. It is hoped that the reader interested in a specific problem will 
bear with the generality of this treatment and a possibly unfamiliar notation. 

In Section II the formulas for the numerical algorithms are derived and written 
in matrix form, and the charge conservation theorem is demonstrated. The gauge 
conditions are written for the Coulomb and Lorentz gauges. In Section III the 
Hamiltonian version of the equations is written and the leapfrog scheme for the 
potentials is specified. In Section IV the formulas are specialized to apply to the 
periodic two-dimensional Cartesian geometry, and explicit formulas are presented 
assuming a piecewise linear representation of the scalar potential. 

II. THE BASIC EQUATIONS 

We consider point particles interacting self-consistently according to the Vlasov 
approximation either in a closed volume V or in a periodic system for which the 
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volume of the basic cell is V. The nomber of particles in V is N. The position 
vector, charge, and mass of particle i are Ri , Qi , and i& , respectively. The coordi- 
nate system is that associated with three orthogonal unit vectors C+(r). The unit 
vectors form a right-handed set: CI, = Ei x Ci when (i,j, k) is a cyclic permutation 
of (1,2, 3). The coordinate of r associated with Cj is xj . The derivative of r with 
respect to xi is given as usual in terms of a function h,(r): 

ar 
_ = h,(r) &(r). axj 

The coordinate of Ri associated with Cj is denoted by ~tj’, and the time derivative 
of Ri is 

The representations of the scalar and vector potentials that we consider are 
expressed by 

dry 0 = dr, t) + C 4) @A9 
n 

(1) 

and 

Ah t> = A&r, t) + C $<r) 1 &)(t)&;)(r), 
j=l 111 

(2) 

where the set of functions Qp, and the three sets of functions &$I, one for each j, 
are each linearly independent. The index n on the basis functions @Jr) and d$(r) 
is a shorthand notation for a set of three indices (n, , n2 , n3). If each basis function 
were a product of a function of x1 , a function of x2 , and a function of xs , as is 
often the case, then nj would label the functions of xj . We need not specify the 
precise meaning of the three indices at this point, except to establish the convention 
that ni = 0 implies no dependence on xj : 

if nj = 0, then Qn(r) = @ n,n,n,(r) does not depend on xj and 

a?:)(r) = d&ans(r) does not depend on xi . 

The functions y,, and A, are specified external potentials that may be required by 
the physical problem or that are included for mathematical convenience. They 
must satisfy the boundary conditions that are imposed on y and the tangential 
component of Al, thus making (p, - P)~) and the tangential component of (A - A,,) 

1 See Ref. [l, Eqs. (24) and (29)]. 
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either vanish on the boundary or satisfy periodic boundary conditions. The specified 
charge and current densities associated with qO and A, will be denoted by p,,(r, t) 
and jo(r, t). The functions Qp, and the tangential component of C,&$ must separately 
either vanish on the boundary of V or satisfy periodic boundary conditions. (If 
there are periodic boundary conditions for one or more coordinates, then they 
must be satisfied the normal component of C,&‘$ as well.) 

The Lagrangian is [l] 

(3) 

where 
A,,@, t) = iii(r) . A,@, t). 

The Euler-Lagrange equation for yy) is the usual particle equation of motion, 

where 
A&, t) = &(r) . A(r, t). 

The Euler-Lagrange equation for alz is 

svd3r [C a,,, V@,(r) + i C &%&r) d:)(r)] * VDn(r) = 4~ $il Q,‘,(Ri), 
77% ?,nz 

(5) 
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and that for fl$ is 
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1, d+ [v x C flpk(r) d:)(r)] . V x P#) ~:Yr)l 
k.m 

The external potentials and sources do not appear in Eqs. (5) and (6) because 
they satisfy Maxwell’s equations and because of the boundary conditions imposed 
on the basis functions. 

Choice of ST?:’ and Interpretation of the Equations 

Equation (5) can be viewed as the representation of the Maxwell V * E equation 
in the space of functions @*, and Eq. (6) can be viewed as the representation of 
the Maxwell V x B equation in the space of functions Z,J@). In terms of the 
representations of the potentials given by Eqs. (1) and (2), the Maxwell V * E 
and V x B equations for point particles are, respectively, 

-V . [C OL,, V@,(r) + i C &X+,(r) &‘iJ(r)] = 47r : Qi 8(r - Ri), (7) 
m 3.m id 

and 

v x v x C ,k?~)e,(r) &g)(r) = 2 ,f Qi& s(r - RJ 
k.m 24 

The representations of these equations are the systems of equations obtained by 
forming the inner product of the V * E equation with each of the functions @,, 
and the inner product of the V x B equation with each of the functions Zj * SS’$). 
That is, Eq. (5) can be obtained by multiplying the V * E equation by Qn(r) and 
integrating over V, and Eq. (6) can be obtained by scalar multiplying the V x B 
equation by 4(r) &z)(r) and integrating over V. Equations (7) and (8) can usually 
be satisfied only if the basis functions are complete. Nevertheless, even if the basis 
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functions are incomplete, Eqs. (5) and (6) can still be thought of as representations 
of the V . E and V x B equations in the spaces of the functions Qn and ej . &‘h5’. 

So far we have not assumed a connection between the basis functions for the 
vector potential and those for the scalar potential. As long as the two sets of basis 
functions are complete, this does not present a problem in principle because 
Eqs. (5) and (6) are then equivalent to the V . E and V x B equations. All mani- 
pulations with the differential equations have exact analogs with the representa- 
tions, and general properties of the differential equations are also general properties 
of the representations. However, when the basis functions are incomplete, as is 
generally the case when we think of numerical computations, the situation is 
different. Then, Eqs. (5) and (6) are only approximately equivalent to the V . E 
and V x B equations. Manipulations with the differential equations do not 
necessarily have exact analogs with the representations, and general properties 
of the differential equations are not necessarily general properties of the representa- 
tions. The energy conservation theorem is always valid regardless of what the 
basis functions are [I]. On the other hand, the charge conservation theorem, which 
is obtained by adding l/c times the time derivative of the V . E equation to the 
divergence of the V x B equation, is not usually valid for the representations 
unless there is an appropriate connection between the basis functions for the 
vector and scalar potentials. 

In this paper we choose a connection between the basis functions that always 
ensures a charge conservation theorem for the representations. We define .@‘$ in 
terms of Cp, by 

C,(r) . V@,(r) = 
d:)(r) = 

& 2 @dr), for nj f 0, 

$j @n(r), 

(9) 
for nj = 0. 

With ,02:) so defined, we can interpret Eq. (6) in terms of the space of functions 
Qn, so that Eqs. (5) and (6) together can be interpreted in a unified way in terms 
of the same space. The cases nj = 0 and nj # 0 must be considered separately. 
For nj # 0, Eq. (6) is the representation of the divergence of that part of the 
V x B equation that is parallel to Ci ; that is, it is a representation of 

v I /B,(r) C,(r) . [V x V X ,C, P:)%(r) JCYr)] 1 

= f v . [6,(r) 4(r) * 5 Q& %r - R,)] 
i=l 

1 - - V . it+(r) l+(r) * [C 
c m 
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To obtain Eq. (6) from Eq. (10) for nj # 0, multiply Eq. (10) by @&), integrate 
over V, and use the partial integration formulas 

j d3r@,V . [C& . D] = -1 v @r[+ . D] &z) (for nj # 0) 
V 

and 

s 
d%B * V x &? = J 

d3r& . V x B. 
V V 

[For nj = 0, the inner product of Eq. (10) with @, vanishes because then 
$(r) . VQpn(r) = 0.1 Clearly, that part of the current density that is parallel to Cj 
and divergence-free is ignored in Eq. (IO), and is also ignored in Eq. (6) for ?zj # 0. 
That part of the current density is taken into account in Eq. (6) when nj = 0. 
For nj = 0, Eq. (6) is the representation of [l/&(r)] times the part of the V x B 
equation that is parallel to &j . This representation is in the space of functions @,, 
such that n3 = 0. [The functions on(r) such that nj = 0 are those that do not 
depend on xi .] 

The expression for the vector potential is now 

and its curl is 
3 

V x A(r, t) = V X A&r, t) f iTI i$(r) C 

(gb) 

[&’ - KJ h,(r)\,(r) j$& q(‘) 

where (i,j, Ic) is a cyclic permutation of (1,2, 3). 

The Final Equations in Matrix Notation and Charge Conservation 

By introducing matrix notation we can write Eqs. (5) and (6) in a more trans- 
parent form as 

- T,,,,ol,,, + ; i T$,&) = 43rP, 1 (13) 
34 
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where 

P, = 2 Qi@n(Ri), 
i=l 

(for all n) 

= - i Qipiz) 6 @JRi) (for nz # O), 
i=l z 

T(j) = - 
n;m s 

d%[V@,(r)] - Cj(r) &g)(r) (for all m) 
V 

=--- 
s 

d3r[VQjn(r)] - $(r) &j(r) - [V@,(r)] (for mj # 0), 
V 

T n;m = - s 
~31.Wj,Wl . Wk&)l 

V 

= i T$,Jl - %,m,h 

JqmJ = - 
n,m s V 

d3rdf)(r) &k)(r) 

= T”’ 
n,m for nj # 0, 

(14) 

(154 

(15b) 

U5c) 

Wf) 

uw 

S’1.k’ = - 
n:m i 

d%{V x [Ez(r) &t)(r)]} . {V x [C,(r) &‘j$)(r)]} (for all n and m) 
V 

W) 

= - j {dW x [C,(r) C,(r) . V@,(r)]) . {V x [S,(r) b,(r) . VCDm(r)]}. 
V 

(for nz # 0 and m, # 0) (159 

The relation 

holds because V x VOn(r) vanishes. 
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The equations and quantities that have been introduced can all be interpreted 
as representations in the space of functions Qn . The interpretation of Eqs. (13) 
and (14) was discussed in connection with the choice of ~2:). Equation (13) repre- 
sents the V . E equation. For IZ~ # 0, Eq. (14) represents the divergence of that 
part of the V x B equation that is parallel to CC . For PZ~ = 0, Eq. (14) represents 
- [ 1 /h,(r)] times the part of the V x B equation that is parallel to Cl in the subspace 
of functions Qn(r) that do not depend on x1 . The coefficients 01, and /3$ represent 
the functions for which they are the expansion coefficients in a linear combination 
of the basis functions CD, . The coefficients 01, represent the self-consistent scalar 
potential [v(r, t) - yo(r, t)]. For nj = 0, the coefficients fly) represent the part 
of hi(r) $(r) . [A(r, t) - A,@, t)] that does not depend on xj . For nj # 0, the 
coefficients /3:) represent an integral of the part of hi(r) C,(r) . [A(r, t) - A,@, t)] 
that does depend on xi ; that is, they represent 

[A(r’, t) - A&r’, t)] - $(r’) & c /3:)(t) @Jr’)/ 
3 

(n,%, 

where the integral is a line integral taken between a fixed point r. to a variable 
point r along a path parallel to &(r’). It is to be noted that the numbers /3$ for 
n3’ # 0 do not represent [A(r, t) - A,@, t)] in this space, and that the part of 
i$(r) * [A(r, t) - A,@, t)] that depends on xi is obtained from the integral in 
Eq. (16) by operation with &(r) . V. 

The numbers P, represent the charge density due to the particles. The numbers 
J,f’ for fixed I and n, # 0 represent the divergence of that part of the current 
density due to the particles that is parallel to C1 . The numbers JA”) for fixed I and 
n6 = 0 represent -[l/h,(r)] times the Ith component of the current density due 
to the particles in the subspace of functions On(r) that do not depend on x1 . The 
matrices T(j), T, W(j), and W*“) represent differentiation operators according to 
the scheme 

T”’ = W& +-+ V - CiCj . V lE,m (for nj # 0, mj # O), (174 

1 
T,!$,tt v* e.-- 

3 hj 
(for l?Zj = 0), (17b) 

T,;, t) V . V, (17c) 

W;;m 
1 

++-v (for nj = 0, mj = 0), (174 

5wo/3-3 
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and 

(for n2 # 0, mk f 01, 

(for It1 # 0, mk = o), 

S’Z.k’ +m, j 
n;m 

i 

1 

--e 
hz 

*‘1 ’ v x v x &i?k ’ v (for nz = 0, mk # o), (17e) 

1 -- 
hz 

&‘-xi!,; (for Hz = 0, mk = 0). 
k 

The charge conservation theorem can be demonstrated by adding l/c times the 
time derivative of Eq. (13) to the sum over 1 of (1 - &,,,,> times Eqs. (14). The 
sum over I is the representation of the divergence of the V x B equation, and the 
left-hand side vanishes because the sum over 1 of (1 - S,,,l> Siz;z vanishes. The 
result is 

(18) 

which is the representation of the usual charge conservation theorem. The fact 
that it can be derived from Eqs. (13) and (14) reflects the consistency of our inter- 
pretation of these equations in terms of the Maxwell equations. On the other 
hand, because it is obviously true as a result of the definitions of P, and Jc), 
it also shows the redundancy of Eqs. (13) and (14). That is, we can use it to derive 
the time derivative of Eq. (13) from the sum over I of (1 - S,,,,J times Eq. (14), 
so that Eq. (13) is automatically valid at all times if it is satisfied at any one time. 
To remove this redundancy, we introduce a Coulomb or Lore& gauge condition 
in analogy to the usual treatment of Maxwell’s equations. 

Coulomb Gauge 

The representation of the Coulomb gauge condition is 

s V 
#r@,(r) v * c i /yqr> d$(r) = 0 

rn i=l 

or 

; j; T,$J$) = 0. 

This simplifies Eq. (13) to 

-c Tn;,p, = 47rP,, 
m 

(19) 

(20) 
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which is the representation of Poisson’s equation. The potential coefficients can 
be determined from this equation. Their time derivatives, which appear in Eq. (14), 
can be determined from 

(21) 

which is the time derivative of Eq. (20) rewritten by use of the charge conservation 
theorem. Therefore, the problem can be treated in the Coulomb gauge by solving 
Eqs. (20), (21), and (14). Solution of Eq. (21) for the coefficients 6, can be avoided 
by using the Hamiltonian formulation presented in Section III. 

Lorentz Gauge 

The Lorentz gauge condition is represented by 

or 

(22) 

where 

G z-z n:m I d+@&) cP,W. (23) 
V 

The quantities h, appearing in Eq. (14) are then determined from Eq. (22), and 
Eq. (13) is rewritten as 

c [- G,,,t$,, - T,;,,a,,j = 47rP, 
m 

(24) 

Therefore, in the Lorentz gauge, the equations to be solved are Eqs. (24), (22), 
and (14). 

III. HAMILTONIAN FORMULATION AND A REVERSIBLE DIFFERENCE SCHEME 

By using a Hamiltonian formulation, the representation of Maxwell’s equations 
can be recast into a system of first-order differential equations that are amenable 
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to a reversible, time-centered difference scheme. We begin again with the 
Lagrangian, rewritten in terms of the matrices introduced in the previous section: 

The canonical momenta and Hamiltonian are 
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where 

The Hamiltonian equations are 

(284 

and 

Equations (28a) and (28b) are the Hamiltonian form of Eq. (4), and Eq. (29) is 
identical to Eq. (13). Equations (30a) and (30b) are equivalent to Eq. (14). 

To obtain a time-centered difference scheme we use the Coulomb gauge, so 
that the electromagnetic equations to be solved are Eq. (20) for 01, , and Eqs. (30a) 
and (30b) for pa’ and ug). The quantities P, , 01,) and ~2’ are defined at integral 
multiples of the time step, whereas J$ and /3:’ are defined at half-integral multiples 
of the time step. With this convention, the usual leapfrog scheme may be used 
with Eqs. (30a) and (30b) to advance /3$ and UC’ in time, and the scheme will be 
exactly reversible insofar as the potentials are concerned. If the particle transport, 
either with Eq. (4) or Eqs. (28a) and (28b), is performed with a reversible scheme, 
then the time evolution of the entire system will be reversible. 

IV. AN EXAMPLE 

To give a specific instance of the formulas that have been derived, we take the 
simplified periodic Cartesian geometry that was used for simulating the Weibel 
instability by Morse and Nielson [17]. We assume periodic boundary conditions 
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with period L in the x1 and x, directions and unit period in the x8 direction. (No 
confusion should arise because of using the symbol L both for the period and the 
Lagrangian.) Each function hj(r) is unity and the coordinates (x1 , x2 , x3) corre- 
spond to (x, y, z). The potentials are allowed to depend on x1 and x2 , but not 
on x3, and the third component (z component) of the vector potential is identically 
zero. Correspondingly, the charge and current densities may depend on x1 and xg , 
but not on x3, and the third component of the current density vanishes identically. 
There are no external potentials and we work in the Coulomb gauge. The V . E 
equation is 

-(X+$) 
3x12 22 

v(xl , x2 , t) = 45. 5 Qi 6(x, - yj”) 6(x, - 
i=l 

The V x B equation is 

_I 

- 

(31) 

(32) 

and the divergence of that part of the V x B equation that 
(I = 1 or 2) can be written as 

is parallel to Cr 

(--1Y J$ + [J ~xI’-~(xI’> xz 3 t) - J &‘A,(x, , xi, O] 

= 7 & $ Qi#’ 6(x, - yl”) 6(x, - #‘) 
I 

i a2 --- 
c ax12 [ v '(x , x2 , t> + q, ; j”’ &‘&Xl’, x2, t) + s,,, f .i’” dx,‘&x, ) x2’, t)]. 1 

(33) 

The relation V . A = 0 has been used to simplify the V . E equation, but it has 
not been used in Eq. (32) to replace V x V x A by -V2A. The reason is that, 
although the Coulomb gauge condition expressed by Eq. (19) makes the representa- 
tion of V . A vanish, it does not make the representation of V * b&j * VV . A 
vanish as it would if the basis functions formed a complete set. The form in which 
Eq. (33) is written stresses the relation of that equation to Eq. (14) for n, # 0. 

We now take @,(x1 , x2) = @,&x1 , x2) to be the product of a function of x1 
and a function of xZ , 
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where 
go(x) = h,(x) = 1. 

The basis functions for the vector potential are then 

-c4$&1 7 x2) = I &,(x1) h&2)~ n1 # 0, 

h tx ) 
na 23 n, = 0, 

and 

Wb) 

(34c) 

The indices n and m on all matrix quantities will be replaced by n1n2 and m1m2 , 
respectively. 

The representations of the charge and current densities are defined in accordance 
with Eqs. (15a)-(15~) as 

J(1) 
n1na = - il Qi# +) &&il)) h,(d9 for n, # 0, Wb) 

2 

Because each basis function is the product of a function of x1 and a function 
of x2, each of the matrix elements defined by Eqs. (15d)-(15i) and Eq. (23) is 
the product of a factor related to x1 and a factor related to x2 . The expressions 
for the matrix elements will look simpler and be clearer if we take the factorization 
into account explicitly at this point. There are in fact only four distinct factors 
that are combined in various ways to form the matrix elements. The four distinct 
factors are 

u(‘) - nm - s dx gnt4 gdx), 

&) - _ Rnl - s dx g,‘(x) g,‘(x), 

(1) 
%n = 

s 
dx Mx) Mx), 

VW 

W) 

(36~) 
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and 

(2) 
v,, = - 

s 
dx h,‘(x) h,‘(x). (364 

z&A and u$ are the representations of unity and d2/dx2, respectively, in the space 
of functions g,(x); z$$ and vgk are the representations of unity and d2/dx2, respec- 
tively, in the space of functions h,(x). In terms of these factors, the matrix elements 
are : 

l41) (2) (1) 
n~nz;"p, = Un,m,%,m, 3 (374 

742) p (2) 
?l~IL~:mp~ = nlmlvn,"z > W'b) 

T (2) 
n1"2:"lmz = U?Z,7TL,%,V12 (l) + u!$i&.$n2 , (37c) 

W&imlm2 = u:$&, unless n, = m, = 0, (374 

ff%,;oJn, = --Lv:in, 3 We) 

w(z) . (1) 
n1112.mlm2 = un,m, V??, 2 2 unless n2 = m2 = 0, Wf) 

w(z) nl.O.m~.O = -Ld$, > (3W 

$Z.k) 
nlna:ml”z = -( - 1)z+kU~;~&;,2 unless n, = mk = 0 and I = k, (37h) 

skl) 
- Lv?;m2' o,nz:o.mz - (37i) 

$2,2) 
n~.O:ml.O = Lu!jm, ) Wj) 

G nln*;m~Tn~ = 
&', (1) 

1 lv%% . (3W 

Remembering that matrices u(l) and vu) are representations of unity and that 
z.J2) and vc2) are representations of d2/dx2, it is easily verified that T(j), T, W(i), 
and ,S(z*k) represent operators of differentiation as stated in Eqs. (17ab(17e). 

For convenience, we rewrite the equations that determine the potentials in the 
Coulomb gauge. Equation (20) becomes 

(38) 

Equation (21) becomes 

(39) 
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Equation (14) becomes 
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Equations (30a) and (30b) become 

As was discussed before, either Eqs. (38)-(40) can be solved, or Eqs. (38), (41a), 
and (41b) can be solved. The gauge condition given by Eq. (19), which must be 
satisfied initially, is 

,c, iI T&~:m~m2P&~ = 0. (42) 
1’ 2 

As the last step in the example we specialize to a uniform square mesh and a 
piecewise bilinear representation of the scalar potential. This leads to “area- 
weighting” for the apportionment of charge. Let the edge length of the elementary 
cell be d, so that the number of cells in each direction is L/d. For the functions 
g,(x) and h,(x), we take the local basis functions for one-dimensional, periodic, 
continuous, piecewise linear functions.2 

&L4 = Mx) = 1, (434 

i 

+[x-(n-l)d], if@--l)d <x<nd, 

g,(x) = h,(x) = 

I 

+ [(n + 1)d - x], if nd < x < (n + l)O, (43b) 

for 1 < n < 4 - 1 0, otherwise. 

a See pp. 326-331 of Ref. [I]. There is a minor difference between the representation used here 
and that used in Ref. [l]. Here the potential is only assumed to satisfy periodic boundary condi- 
tions, whereas in Ref. [l] it is assumed to vanish on the boundary as well. 
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Note that &A n24 1) is (s,,, + ao.n, + ~~~~~ + 01~,~) with these basis functions, 
and that 01~,~ may be set equal to zero. The matrices u(l), ~(~1, u(l), and z@) are given 
by 

+ [4&Z, + &-l,, + f3 n+l,m)l, if n # 0 and m f 0, 

A,ifn=Oandm#O,orifn#Oandm=0, 
L,ifn=m=O, 

(44) 

J2) p - +- [--2Ln + @n-1,m + 6 n+l,m)l, if n # 0 and m f 0, 
r&m = nm - (45) 

0, if n = 0 or m = 0. 

An illustrative schematic representation of the matrices T(l), T, S1), and G in 
the interior of the mesh when n, , n2 , m, , and m2 are all nonzero is 
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